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Effects of high-order dispersions on dark-bright vector
soliton propagation and interaction
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The dynamics of dark-bright vector solitons is investigated in a birefringent fiber with the high-order
dispersions, and their effects on vector soliton propagation and interaction are analyzed using the numerical
method. The combined role of the high-order dispersions, such as the third-order dispersion (TOD) and
the fourth-order dispersion (FOD), may cause various deformation of the vector soliton and enhance
interaction. These effects depend strictly on the sign of the high-order dispersions. Results indicate that
the disadvantageous effects can be reduced effectively via proper mapping of the high-order dispersions.
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Optical solitons in fibers are formed by a balance of
group dispersion and Kerr nonlinearity. Numerical simu-
lation and experiments have demonstrated that solitons
can propagate an extended distance without distortion.
So, they may be the ideal message carriers in long dis-
tance communication[1].

Numerous perturbations exist in a practical soliton sys-
tem; these lead to fluctuations in amplitude or pulse
width of the soliton, and deform soliton shape[2,3]. Spe-
cially, an optical fiber exhibits high-order dispersions be-
cause of the short pulse width (such as sub-picosecond
pulse width soliton) in the fiber. When the high-order
dispersions cannot be disregarded during soliton propa-
gation, the traveling pulses experience waveform distor-
tion, and a dispersive wave radiation appears in the sys-
tem, resulting in the decrease in transmission capacity[4].

Dark (bright) solitons propagate in the normal (ab-
normal) dispersion region. Techniques for generating
and detecting dark (bright) soliton pulses have been de-
veloped, and the dynamics of the dark (bright) soli-
tons propagating in a birefringent optical fiber has been
investigated[5,6]. For example, the bright and dark soli-
tons can be generated by a pulsed laser in a cold three-
state medium[7], and numerical and analytical theoretical
studies have demonstrated their evolution in a fiber. The
coupled dark-bright vector soliton, in which a bright opti-
cal solitary wave exists in a system with defocusing non-
linearity because it is trapped within a co-propagating
dark soliton, possesses interesting and distinguishing dy-
namics, which differs from that of bright and dark soli-
tons. Nonlinear effects and the high-order perturba-
tions (such as the third-order dispersion (TOD) and the
fourth-order dispersion (FOD)) may modify the effects
of the short-ranged interactions between the neighboring
solitons[8,9].

Polarization-division multiplexing, in which pulses
travel along two orthogonal polarizations of the fiber,
doubles the transmission rate compared with the launch-
ing of pulses along the same polarizations; transmission
capacity can be further increased using a combination of

polarization and other multiplexing techniques (such as
time-division and wavelength-division multiplexings)[10].
However, the high-order dispersions, including TOD and
FOD, may become leading limiting factors in the com-
bination of polarization and other multiplexing systems,
with increasing communication capacity.

Recent numerical and analytical theoretical studies
have demonstrated both stable and unstable evolution of
dark-bright vector solitons in birefringent fiber, and have
shown that dispersion plays a crucial role in the phys-
ical features of the dark-bright vector solitons. These
features include modulation instability and transmission
capacity. In this letter, the effects of the high-order dis-
persions are investigated on the dark-bright vector soliton
propagation and interaction in a birefringent fiber. The
combined role of the high-order dispersions is discussed
and novel results are obtained.

When the effects of the high-order dispersions, such as
TOD and FOD, are considered on vector soliton prop-
agation and interaction, the envelop of the field can be
described in a normal dispersion fiber by the coupled
nonlinear Schrödinger equation (CNLSE) as
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where u and v are normalized elliptically polarized com-
ponents along two orthogonal directions, respectively.
Z = z/zd, zd = τ2

0 /
∣∣d̄∣∣, and τ = t/τ0. z and t are

actual distance coordinates and time, respectively. τ0,
zd, d̄, η, β3, and β4 represent the pulse width, the dis-
persion length, the average second-order dispersion, the
group-velocity delay, and TOD and FOD coefficients,
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respectively.
Although Eq. (1) has a Hamiltonian structure, it

is not exactly integrable because the envelop of the
polarized components becomes inhomogeneous due to
the high-order dispersions along the fiber (Z dependent
coefficient). Such behaviors of the normalized ellipti-
cally polarized components u and v may be obtained
as their responses are averaged over the high-order dis-
persions (the average high-order dispersion). However,
simply taking the average high-order dispersion fails to
provide the proper response because of the correlations
with variations of u, v, β3, and β4. Thus, the behaviors
of dark-bright vector soliton propagation and interaction
are investigated using numerical simulation to provide
the proper dynamics in the birefringent fiber.

In the calculation models, four maps of the high-order
dispersions are considered.

Map (a): The signs of the TOD and FOD coefficients
are the same, and both are negative in the fiber.

Map (b): The signs of the TOD and FOD coefficients
are the same, and both are positive in the fiber.

Map (c): The TOD coefficient is positive whereas the
FOD coefficient is negative along the fiber.

Map (d): The TOD coefficient is negative whereas the
FOD coefficient is positive along the fiber.

Equation (1) can be solved numerically using the split-
step Fourier algorithm, and the group-velocity delay is
η = 0.5 for a general birefringent fiber in the figures
below. The second-order dispersion of the birefringent
fiber is d = −1.00 ps2/km as the perfect second-order
dispersion map for the dark-bright vector solitons[9], and
the dispersion length is about 1 km corresponding to the
second-order dispersion for the soliton of initial pulse
width τ0 = 1 ps. Figure 1 shows the normalized inten-
sity of a vector soliton in the same polarizing direction
versus the propagation distance for only TOD or FOD,
and the initial soliton pulses are u(τ, 0) = tanh(τ) and
v(τ , 0) = sech(τ). We can see that the individual roles
of the high-order dispersions lead to the disintegration of
the bright soliton and submergence of the dark soliton.
The disintegration distance or submergence distance,
which is defined as the distance until disintegration

Fig. 1. Normalized intensity of a vector soliton in the
same polarizing direction versus the propagation distance for
different dispersion maps. (a) β3 = −0.8 and β4 = 0; (b)
β3 = 0.8 and β4 = 0; (c) β3 = 0 and β4 = −0.3; (d) β3 = 0
and β4 = 0.3.

or submergence, is reduced. The effective propagating
distance is defined as the shorter distance between the
disintegration distance and submergence distance. For
example, the effects of TOD are smaller than those of
FOD when they have negative signs, but the opposite
occurs when they have positive signs. The effective prop-
agating distance strictly depends on the amplitude and
sign of each high-order dispersion.

Figure 2 shows the normalized intensity of a vector
soliton in the same polarizing direction versus the prop-
agation distance for different dispersion maps. Figure
3 illustrates the effective propagation (interaction) dis-
tance versus the TOD coefficient for different FOD
coefficients. The initial soliton pulses are the same as
those in Fig. 1, and the TOD and FOD coefficients are
chosen in different dispersion maps. From Figs. 2 and 3,
we can see that the effects of the high-order dispersion
in maps (b) and (d) are smaller than those in maps (a)
and (c), which have almost the same effects, with a cor-
responding propagation distance far longer than those
in maps (a) and (c). The disintegration of the bright
soliton and the submergence of the dark soliton are prin-
cipally caused by the combined role of the high-order
dispersions. However, the combined role can be reduced
effectively if the signs of the high-order dispersions are
organized properly. For example, the combined role of
the high-order dispersions can be reduced if the FOD co-
efficient is positive along the fiber.

Figure 4 shows the normalized intensity of four vec-
tor solitons in the same polarizing direction versus the
propagation distance for different dispersion maps. The
initial inputs of four dark soliton pulses are

u(τ, 0) =


tanh(τ − 3∆/2) for ∆ ≤ τ < ∞,

tanh(τ − ∆/2) for 0 ≤ τ < ∆,

tanh(τ + ∆/2) for − ∆ ≤ τ < 0,

tanh(τ + 3∆/2) for −∞ < τ < −∆.

(2)

The initial input of four bright soliton pulses is

v(τ, 0) = sech(τ − 3∆/2) + sech(τ − ∆/2)
+ sech(τ + ∆/2) + sech(τ + 3∆/2), (3)

where ∆ is the separation between two neighboring soli-
tons in the same polarizing direction, and ∆ = 10 (about
6 times of the initial soliton width), as shown in Fig.
3. The interaction between neighboring solitons can be
suppressed effectively when initial separation between
solitons in the same polarizing direction is larger than
five times of the soliton width in the average disper-
sion soliton system[1]. We can see that the high-order
dispersions enhance the interaction between the vector
solitons even if the separation is larger than five times
of the soliton width. The interaction distance is defined
as the shorter distance where the timing shifts of the
neighboring solitons exceed half of their full-width at
half-maximum (FWHM) of the vector solitons between
two polarizing directions. We find that the interac-
tion distances relate to the signs of the high-order dis-
persions and the separation between two neighboring
solitons. Additionally, the effects of the high-order dis-
persion in maps (b) and (d) are smaller than those in
maps (a) and (c). Moreover, the combined role has an
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Fig. 2. Normalized intensity of a vector soliton in the
same polarizing direction versus the propagation distance
for different dispersion maps. (a) β3 = −0.8 and β4 = −0.3;
(b) β3 = 0.8 and β4 = 0.3; (c) β3 = 0.8 and β4 = −0.3; (d)
β3 = −0.8 and β4 = 0.3.

Fig. 3. Effective propagation (interaction) distance versus
the coefficient of TOD. Solid line: β4 = −0.3; dashed line:
β4 = 0.3.

important function in the soliton interaction in the same
polarizing direction, and the proper high-order disper-
sion map may increase interaction distance.

Results in Figs. 1−4 show that the effects of the
high-order dispersions can be reduced using the proper
high-order dispersion maps. Furthermore, we find that
the bright solitons have robust features compared with
the dark solitons in the presence of the high-order dis-
persions. These features include good resistance to the
combined role of the high-order dispersions. The result
is different from that previously obtained[9,11], in which
the dark solitons generally have robust features, such as
good resistance to the randomly varying birefringence,
compared with the bright solitons. This is attributed to
the fact that the high-order dispersions modify the effects
of the soliton interactions between the neighboring dark-
bright vector solitons in two orthogonal directions.

To reduce the effect of the combined role of the high-
order dispersions, we can change their signs in a special
material fiber (such as metamaterial waveguide fibers),
in which organizing the proper high-order dispersion
maps to stabilize the propagation and interaction of the
vector soliton pulses is possible. The study of the modu-
lation instability of the nonlinear polarizing soliton prop-
agation in metamaterials shows the probability of the

Fig. 4. Normalized intensity of four vector solitons in the
same polarizing direction versus the propagation distance for
different dispersion maps. (a) β3 = −0.8 and β4 = −0.3; (b)
β3 = 0.8 and β4 = 0.3; (c) β3 = 0.8 and β4 = −0.3; (d)
β3 = −0.8 and β4 = 0.3.

reduction of the effects by incorporating the dispersive
permeability of metamaterials and the high-order dis-
persion map. Borrowing the derivation of the nonlin-
ear pulse propagation equation in ordinary material, the
general nonlinear propagation equation close to Eq. (1)
for ultrashort pulse (such as sub-picosecond pulse width
soliton) in metamaterials can be obtained[12].

The high-order dispersions may become the leading
limiting factors because of the use of ultrashort pulses,
and an available means to surmount these difficulties is
managing the second, third, and other higher-order dis-
persions. Utilizing the higher-order dispersion manage-
ment, the asymmetric broadening that takes place for
ultrashort optical pulses in single channel systems with
conventional dispersion system is almost exactly com-
pensated for. Furthermore, the higher-order dispersion
management makes it possible to compensate for disper-
sion over many neighboring frequency channels simul-
taneously. Advancements in fiber manufacturing tech-
niques have enabled the incorporation of this idea into
new optical fibers, called dispersion slope compensating
fibers. Recent experiments have yielded impressive re-
sults, and the higher-order dispersion management of op-
tical pulses in a fiber poses promising prospects for high
speed communication[13].

In conclusion, the coupled dark-bright vector soli-
tons are considered using different high-order dispersion
maps, and the combined role of the high-order dispersions
on the dark-bright vector soliton propagation and inter-
action is investigated using the numerical method. The
combined role may lead to the rapid disintegration of the
bright soliton and the submergence of the dark soliton,
as well as enhance the neighboring soliton interaction.
The effects depend strictly on the signs of the high-order
dispersions, and are principally caused by the combined
role of the high-order dispersions. The effects may be re-
duced using the proper high-order dispersion maps. The
bright solitons may have robust features compared with
the dark solitons in the presence of the high-order disper-
sions, attributed to the fact that the high-order disper-
sions modify the effects on the interactions between the
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neighboring dark-bright vector solitons in two orthogonal
directions. The results show that it is possible to reduce
the disadvantageous effects by incorporating the disper-
sive permeability of the metamaterial waveguide and the
high-order dispersion map.
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